BOAS PRÁTICAS PARA MEDIR O NÍVEL D'ÁGUA

EM SONDAGENS

GUIA PARA SONDADORES 9EÓLOGOS ENGENHEIROS

APRENDA TREINE ESPECIFIQUE PREPARE

GIULIANO DE MIO

APRESENTAÇÃO

A busca pela **qualidade das investigações** me acompanha **a anos**, na empresa de sondagem, nas experiências de projeto e agora na digitalização de sondagens geológico-geotécnicas.

O nível de água (NA) é uma daquelas informações que frequentemente é medida de forma incorreta ou simplificada.

Com a **digitalização das sondagens** e com a análise automática dos dados, o registro criterioso das medidas passa a ser fundamental.

É com objetivo de ajudar sondadores, engenheiros, geólogos e demais profissionais envolvidos, a especificar, a medir e a apresentar resultados **de forma criteriosa**, que organizei este guia.

1.	Uma visão de futuro4
2.	Por que medir o nível de água corretamente nas sondagens
3.	Registros de nível de água no BIM8
4.	Identificação em campo e medida do nível de água10
5.	Colocando em prática

1. Uma visão de futuro

A sobrevivência das empresas cada vez mais requer a busca pela eficiência. E ela não é individual, ela depende da **cadeia de produção**, seus fornecedores e seus clientes.

E as novas tecnologias de comunicação, internet e robotização estão começando a aparecer na indústria da construção civil, impulsionadas pelo BIM e focadas na integração da cadeia de produção.

Existe um anseio por projetos melhores, implantados dentro dos prazos e nos custos previstos. E é isto que faz a **investigação geológico – geotécnica** ganhar importância, a necessidade de previsibilidade, especialmente nas obras de infraestrutura.

Sondagens executadas criteriosamente, com procedimentos padronizados para obtenção de propriedades do terreno passam a ser fundamentais.

Neste guia detalho os **procedimentos para medir o nível de água** nas sondagens, uma informação que frequentemente causa elevação de custos e acidentes nas obras de engenharia e muitas vezes não é medida criteriosamente.

2. Por que medir o nível de água corretamente nas sondagens

As boas práticas de projeto e construção de qualquer obra incluem a execução de sondagens para identificar as características do terreno para as fundações, escavações, contenções de taludes e outros.

A partir do resultado de uma sondagem, apresentado na forma de um perfil ou log de sondagem, são extraídos os dados de localização, de descrição e classificação geológica, do resultado dos ensaios SPT e do nível de água.

O nível de água de um terreno não é estático, ele pode variar em função da época do ano (meses de chuva ou de seca), da presença de aquíferos sob pressão (confinados) e mesmo por influência de outras obras ou eventos, como rebaixamento por bombeamento do NA, perfuração de poços ou mesmo implantação de lagoas ou barragens.

E a posição do nível de água tem implicações diretas na seleção dos métodos de escavação e de fundação e muitas vezes na estabilidade das estruturas.

Surpresas relacionadas a água são frequentes e podem levar a danos nas obras, atrasos de cronograma e aumento de custos!

E talvez você vai pensar que se ela é tão importante assim ela sempre é medida com grande atenção!

Infelizmente não é verdade.

Mas vou te ensinar mais a frente, **como realizar as medidas** e ainda como orientar e especificar para os sondadores, engenheiros, geólogos, projetistas e demais profissionais envolvidos com a área de fundações e geotecnia.

O simples nível da água (NA) do terreno, as vezes prega **muitas surpresas**!

Você sabe que a água no subsolo está envolvida em mais de 80% dos problemas em taludes, fundações e geotecnia em geral?

E muitos dos problemas podem ser evitados se os registros de NA forem feitos criteriosamente e informados ao projetista.

3. Registros de nível de água no BIM

As medidas de NA podem ser aprimoradas pela digitalização e registro padronizado dos dados.

E isto faz parte do BIM. Você já conhece?

Não é objetivo deste guia, mas um dos requisitos para trabalhar em BIM é adotar sistemas padronizados de **classificação das informações.**

A adoção de uma classificação no ambiente digital, permite criar procedimentos padronizados para registro e para entrega de resultados e facilita muito na etapa de análise e na integração entre empresas.

A tabela 1 mostra um exemplo de classificação de nível de água que eu tenho adotado e que é utilizada, em parte, por alguns setores do mercado de investigação geológico - geotécnica.

Tabela 1 – Exemplo de uma classificação de níveis de água em sondagens geológico – geotécnicas, aplicada para identificar, medir, registrar e apresentar criteriosamente os resultados.

Inicial	Nível inicial
Final	Nível final
InicialSemPressão	Nível inicial sem pressão
InicialEstabilizado	Nivel inicial estabilizado, observação mínima de 30 min
DiaSeguinte	Nível no dia seguinte após não identificar NA no 1º dia
Estabilizado	Nível Estabilizado durante execução da sondagem
FinalEstabilizado	Nível Estabilizado após conclusão da sondagem
FinalEstabilizado12h	Nível final, após esgotado, estabilizado > 12 hs
FinalEstabilizado24h	Nível final após esgotado, estabilizado > 24 hs
PerdadeÁgua	Nível após rebaixamento abrupto do NA
Artesianismo	Nível após elevação abrupta do NA
EsgotamentoBaldinho	Nível obtido pelo esgotamento com baldinho
IníciodoDia	Nível antes de iniciar a perfuração diária
FimdoDia	Nível ao fim do dia, após concluir a perfuração diária

4. Identificação em campo e medida do nível de água

Nos itens seguintes vou discutir alguns exemplos – os principais e mais comuns, de **como identificar, medir, registrar e apresentar resultados** de medidas de níveis de água durante a execução de sondagens geológico-geotécnicas.

Observe que as tabelas de cada tipo de NA apresentam a mesma estrutura, onde eu destaco alguns pontos:

- como identificar em campo,
- como proceder para medir,
- como registrar em formulários padronizados,
- como apresentar os resultados no perfil de sondagem.

Este procedimento refere-se à digitalização e a produção automática de perfis e pode ser utilizado para os registros feitos em papel e desenhados em CAD.

O mais importante são os procedimentos e os critérios de medição.

4.1 Medida Simplificada do NA

A prática mais comum que tenho visto no mercado, eu denomino de Medida Simplificada do NA.

O sondador mede basicamente um **nível inicial** e um **nível final**, eventualmente alguma medida no início ou final do dia, nas sondagens que demoram mais do que 1 ou 2 dias.

É uma medida simplificada, mas **requer cuidados**, ela pode ocultar comportamentos particulares do NA, com sérias implicações na obra.

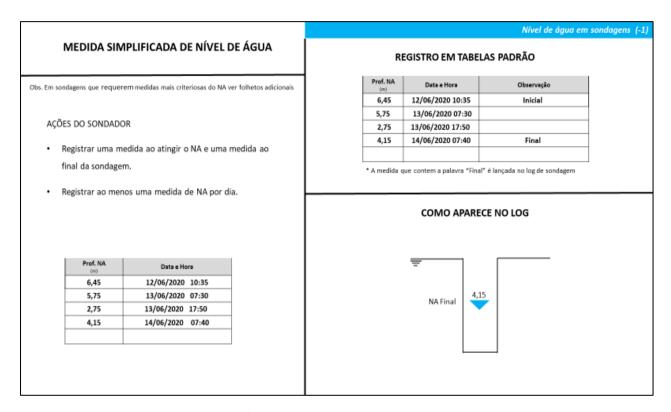


Figura 1 – Exemplo de "Medida Simplificada do NA"

E você sabe qual é o problema desta simplificação?

Quem recebe o perfil (log) da sondagem não sabe exatamente como o sondador mediu o NA, e aí, permanece sempre uma grande dúvida.

A Figura 1 mostra um exemplo desta medida.

Em função desta **incerteza na medida** simplificada do NA, é sempre preferível adotar um procedimento que demostre o critério adotado na obtenção de cada medida.

Para tanto a empresa de sondagem deve ser treinada com base em procedimentos padronizados, que podem melhorar a qualidade das medidas e contribuir para que os projetos e obras no Brasil sejam mais eficientes.

E isto eu chamo de Boas Práticas de Medidas de NA.

Vou analisar a seguir, alguns exemplos de como são estas boas práticas relacionadas as medidas do NA em sondagens geológico-geotécnicas.

4.2 Medidas iniciais ou do primeiro dia

Vou começar com o NA Inicial, aquele normalmente identificado no primeiro dia de sondagem.

Você sabe por que é importante a sua medida?

Já vou abordar isto, mas antes é importante você saber como chegar até o nível de água para poder identificá-lo.

As sondagens sempre devem iniciar com perfuração a seco, utilizando um trado.

Ao encontrar a primeira evidência de água – normalmente a umidade do solo - o sondador deve paralisar a sondagem, observar e registrar a variação do nível em intervalos de 5, 10, 15 e 30 minutos e continuar as medidas até que o nível estabilize, ou seja quando tiver pelo menos duas medidas iguais.

Depois que o sondador encontrar esta umidade podem acontecer duas situações.

Na primeira situação, o NA sobe e estabiliza após um certo tempo, normalmente algumas dezenas de minutos, mas não tem regra, a natureza é muito variável.

Isto é muito importante nesta medida, pois é indicativo de nível de água com pressão, chamado no meio técnico de nível empoleirado.

Pode ser um problema para escavações e fundações, especialmente se não identificado antes da obra e informado ao projetista.

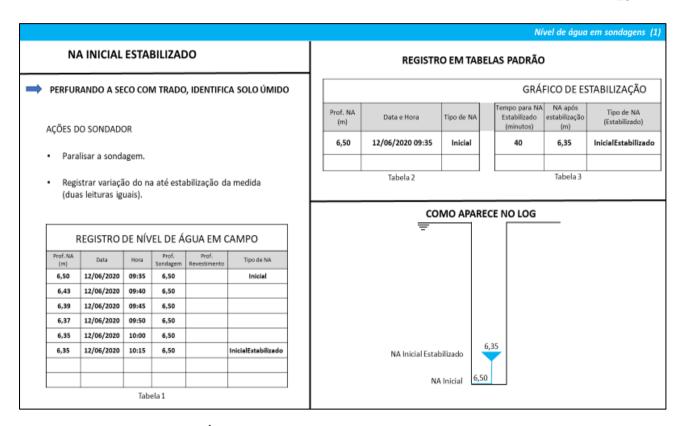


Figura 2 – Exemplo de Nível de Água Inicial Estabilizado

O registro deste tipo de comportamento segue a Figura 2, onde são indicadas uma tabela para o registro de campo e outras duas para o registro em escritório e geração automática de perfis.

A representação do NA no perfil pode ser conforme o exemplo, destacando a variação do NA até a sua estabilização.

A segunda situação é quando o nível de água inicial, aquela umidade do solo, não varia ao longo do tempo, mesmo assim a observação deve ser feita por 30 minutos e registrada.

Esta medida caracteriza o NA Inicial sem pressão, também chamado de nível freático. As medidas devem ser registradas conforme mostrado na Figura 3.

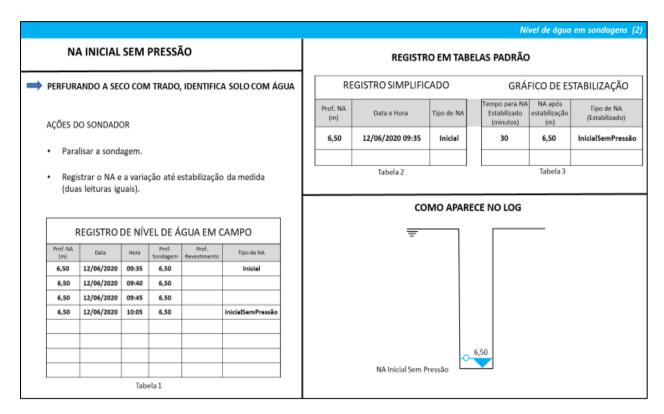


Figura 3 – Exemplo de Nível de Água Inicial Sem Pressão

E eu cometei que eram duas situações, mas na verdade existe uma terceira, ainda relacionada com a perfuração a seco com trado.

É quando o sondador encerra o primeiro dia de trabalho com o furo seco e, ao retornar no dia seguinte, ele observa e registra um nível de água na sondagem. Os registros devem seguir a Figura 4.

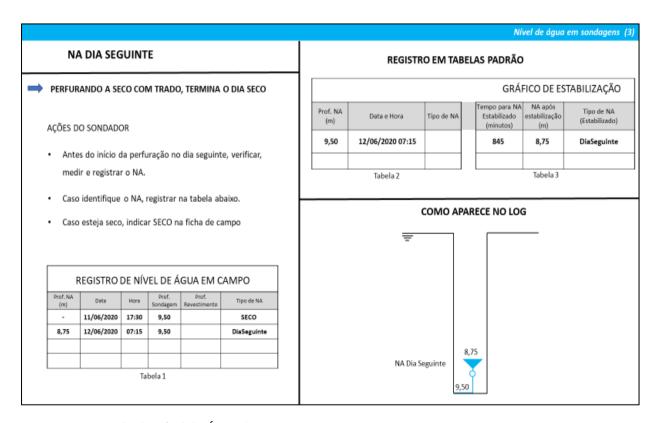


Figura 4 – Exemplo de Nível de Água do Dia Seguinte

É denominado de Nível de Água do Dia Seguinte e normalmente indica solos de permeabilidade baixa, o que pode favorecer alguns tipos de soluções de projeto de fundações ou contenções.

Vamos analisar agora algumas situações relacionadas ao NA, que podem ocorrer durante a execução das sondagens.

Após a identificação e registro do NA durante a perfuração a seco, as sondagens normalmente prosseguem com o processo de lavagem e circulação de água.

O nível de água quase sempre está na superfície ou no topo do revestimento – pois está sendo injetada água no terreno para remoção do solo perfurado.

Com o aprofundamento da sondagem são atravessados diferentes tipos de solos, areias, argilas e outros, cada um com diferentes comportamentos em relação ao nível de água.

E vocês não imaginam a quantidade de **situações diferentes** e surpresas que podem ocorrer.

E com objetivo de entender melhor o comportamento do NA nos diferentes materiais, é comum realizar um ensaio durante as sondagens, que procura a resposta para as seguintes perguntas:

- Com a sondagem paralisada, o que acontece com o NA após esgotar a água do interior do furo com a bomba balde?
- É possível esgotar o furo completamente?
- Até que profundidade ele sobe?
- Quanto tempo leva para estabilizar?

Esta resposta vai dar pistas consistentes sobre o comportamento do NA em cada tipo de solo ao longo do avanço da sondagem.

Para responder esta pergunta o sondador esgota a sondagem utilizando uma bomba manual – a bomba balde ou baldinho, na nomenclatura da operação.

Em algumas das sondagens ele não consegue, porque a quantidade de água que entra é maior do que a que sai com a bomba. Mas, mesmo assim, é importante esgotar o máximo possível, pelo menos uns 30 minutos.

Logo após esgotar, ele deve medir a profundidade do NA e anotar a data, hora, profundidade da sondagem e do revestimento e indicar que o NA foi obtido através do esgotamento com baldinho.

Após esgotado observar e registrar o NA em intervalos de 5, 10, 15 e 30 ou até estabilizar, pelo menos duas leituras iguais.

Este procedimento caracteriza um nível de água estabilizado, demonstrado pelos dados. E o registro dos dados deve seguir a Figura 5.

Ele é conhecido no meio técnico como ensaio de recuperação do nível de água.

Este ensaio pode ser realizado a qualquer momento da sondagem e, quando bem instruído, é uma ferramenta eficaz no entendimento do comportamento da água em cada tipo de solo ou profundidade do terreno.

Uma variação desta medida é o nível de água estabilizado, em 12 h ou 24 h. Nestes dois tipos o NA é esgotado ao final da sondagem, mantendo o revestimento no furo.

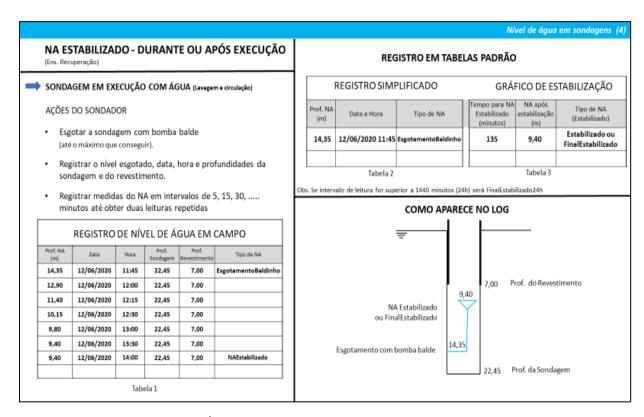


Figura 5 – Exemplo de Nível de Água Estabilizado

O sondador retorna 12 h ou 24 h após o esgotamento, mede um NA Final, estabilizado 12h ou estabilizado 24h em função do tempo decorrido.

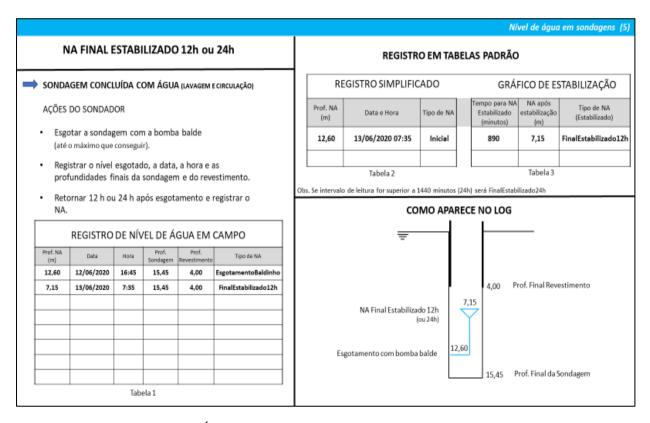


Figura 6 – Exemplo de Nível de Água Final Estabilizado 12h ou 24h

A diferença para o ensaio de recuperação é que são realizadas somente duas medidas, aquela logo após o esgotamento e outra após 12 ou 24h.

E vamos ver um **outro comportamento** do NA que é **frequente**.

É o rebaixamento abrupto do NA durante o processo de lavagem e circulação de água, as vezes ocorre um rebaixamento parcial e as vezes seca o furo.

Ele é chamado de perda de água parcial ou total.

Quando o sondador detecta este comportamento ele deve paralisar a sondagem, desligar a bomba, medir e registrar o NA dentro do furo.

Se ele perceber que a variação continua deve efetuar leituras até estabilização e registrar dados seguindo Figura 7.

E quando o comportamento é inverso, o nível de água sobe abruptamente, é chamado de **Artesianismo**.

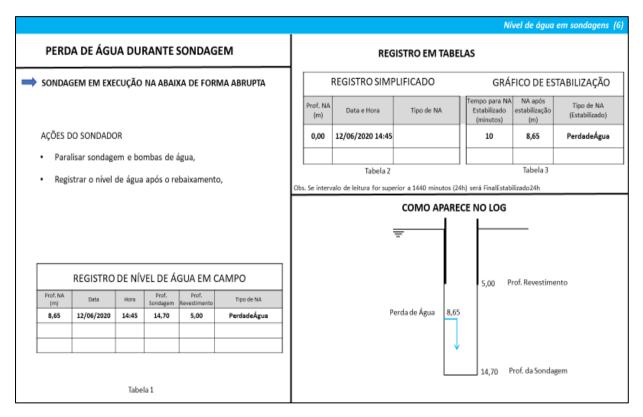


Figura 7 – Exemplo de Perda de Água Total ou Parcial.

5. Colocando em prática

O segredo para efetuar as medidas corretamente é a padronização, de formulários, de procedimentos e de treinamentos. E um pouco de persistência!

A identificação de desvios – ou seja medidas erradas ou incompletas nos boletins de campo, indica a necessidade de treinamento.

Você pode utilizar qualquer equipamento, um "pio", um medidor automático ou outro método tecnológico, o importante, é seguir um padrão e garantir que o equipamento tenha a precisão requerida pelas especificações.

Espero ter contribuído para o seu aprendizado sobre o nível de água em sondagens.

Giuliano De Mio